Skip to main content

Chemistry

data-content-type="article"

Computational studies on multinuclear catalysis

July 27, 2020 01:26 PM
Mononuclear complexes remain the target of the vast majority of catalyst designs. This is part because mechanisms and general principles of dinuclear metal-metal interactions and their impact on catalytic reaction steps remains underdeveloped. My group is playing a major role in the current revival in the use of dinuclear complexes to catalyze reactions with new mechanisms that are faster and more selective compared to traditional mononuclear catalysts. My group’s long-term goals are to discover new mechanisms, reactivity, and selectivity available for two metals compared to one metal and design new dinuclear catalysts and reactions. This has led to collaboration with more than eight experimental research groups around the world. Our recent published works include discoveries of new mechanisms and the origin of reactivity for Ni-Ni catalyzed alkyne cyclotrimerization, Ir-Ta catalyzed alkene hydrogenation, Pd-Ti catalyzed allylic amination, and Rh-Rh catalyzed aziridination and arene C-H amination (ACS Catal. 2017, 7, 4796; Science 2016, 353, 1144; ACS Catal. 2015, 5, 1840; J. Am. Chem. Soc. 2015, 137, 7371; Science 2014, 343, 61). The goals of our current work include development of reactivity and selectivity principles by comparing dinuclear versus mononuclear catalysts and determine the impact of metal-metal pairing. Additionally, we are using calculations to design new dinuclear catalysts for thermal arene borylation and asymmetric reactions.
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

Computational studies of alkane C-H functionalization reactions

July 27, 2020 01:22 PM
Large quantities of light alkanes from natural gas and readily available aromatic hydrocarbons provides motivation to develop homogeneous catalytic C-H bond functionalization reactions. A long-term goal of my group is to use computational chemistry tools to develop general principles on mechanisms, intermediates, reactivity, and selectivity for hydrocarbon C-H functionalization reactions by p-block main-group compounds as well as provide prediction of new catalysts. Read about our work on TlIII, PbIV, IIII, and HgII (Science 2014, 343, 1232; Angew. Chem. Int. Ed. 2014, 53, 10490; Organometallics 2015, 34, 5485; ACS Catal. 2016, 6, 4312; Organometallics, 2017, 36, 109).
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= overrideTextAlignment=
data-content-type="article"

Organometallic reaction dynamics

July 27, 2020 01:19 PM
Metal-mediated organometallic reaction mechanisms are assumed to be appropriately described by minimum energy pathways mapped out by density functional theory (DFT) calculations. However, these static calculations only represent an average structure and lack mechanistic details from dynamical motion. We have recently discovered examples of organometallic reactions where dynamical influences cause the skipping of high-energy organometallic intermediates, which blurs the demarcation between classic mechanisms, such as concerted and two-step. Read about our work:
overrideBackgroundColorOrImage= overrideTextColor= overrideTextAlignment= overrideCardHideSection= overrideCardHideByline= overrideCardHideDescription= overridebuttonBgColor= overrideButtonText= overrideTextAlignment=